September 26, 2022

CloudsBigData

Epicurean Science & Tech

3D isotope density measurements by energy-resolved neutron imaging

5 min read
  • Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R. & Wolff, H. Handbook of Practical X-ray Fluorescence Analysis (Springer Science & Business Media, 2007).


    Google Scholar
     

  • Durrant, S. F. Laser ablation inductively coupled plasma mass spectrometry: Achievements, problems, prospects. J. Anal. At. Spectrom. 14, 1385–1403 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Kelly, T. F. & Miller, M. K. Atom probe tomography. Rev. Sci. Instrum. 78, 31101 (2007).

    Article 

    Google Scholar
     

  • De Samber, B. et al. Three-dimensional elemental imaging by means of synchrotron radiation micro-XRF: Developments and applications in environmental chemistry. Anal. Bioanal. Chem. 390, 267–271 (2008).

    Article 

    Google Scholar
     

  • Kanngießer, B., Malzer, W. & Reiche, I. A new 3D micro X-ray fluorescence analysis set-up—First archaeometric applications. Nucl. Instruments Methods Phys. Res. Sect B Beam Interact. Mater. Atoms 211, 259–264 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Miller, M. K. Atom Probe Tomography: Analysis at the Atomic Level (Springer Science & Business Media, 2012).


    Google Scholar
     

  • Baruchel, J., Buffiere, J.-Y. & Maire, E. X-ray Tomography in Material Science. (Hermes science publications, Paris, France, 2000).

  • Cnudde, V. & Boone, M. N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 123, 1–17 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Strobl, M. et al. Advances in neutron radiography and tomography. J. Phys. D. Appl. Phys. 42, 243001 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Sato, H., Kamiyama, T. & Kiyanagi, Y. Pulsed neutron imaging using resonance transmission spectroscopy. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2009.01.124 (2009).

    Article 

    Google Scholar
     

  • Tremsin, A. S., Feller, W. B. & Downing, R. G. Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10B doping. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2004.09.028 (2005).

    Article 

    Google Scholar
     

  • Lisowski, P. W., Bowman, C. D., Russell, G. J. & Wender, S. A. The Los Alamos National Laboratory spallation neutron sources. Nucl. Sci. Eng. 106, 208–218 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Woracek, R. et al. Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading. J. Appl. Phys. https://doi.org/10.1063/1.3582138 (2011).

    Article 

    Google Scholar
     

  • Woracek, R., Santisteban, J., Fedrigo, A. & Strobl, M. Diffraction in neutron imaging—A review. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators Spectrom. Detectors Assoc. Equip. https://doi.org/10.1016/j.nima.2017.07.040 (2018).

    Article 

    Google Scholar
     

  • Tran, K. V. et al. Spectral neutron tomography. Mater. Today Adv. https://doi.org/10.1016/j.mtadv.2021.100132 (2021).

    Article 

    Google Scholar
     

  • Watanabe, K. et al. Cross-sectional imaging of quenched region in a steel rod using energy-resolved neutron tomography. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2019.162532 (2019).

    Article 

    Google Scholar
     

  • Larson, N. M. Updated Users’ Guide for SAMMY Multilevel R-matrix Fits to Neutron Data Using Bayes’ Equation. (1998).

  • Moxon, M. C., Ware, T. C. & Dean, C. J. REFIT-2009 A Least-Square Fitting Program for Resonance Analysis of Neutron Transmission. Capture, Fission Scatt. Data Users’ Guid. REFIT-2009-10 (UKNSFP243, 2010) (2010).

  • Reich, C. W. & Moore, M. S. Multilevel formula for the fission process. Phys. Rev. 111, 929–933 (1958).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Festa, G. et al. Neutron resonance transmission imaging for 3D elemental mapping at the ISIS spallation neutron source. J. Anal. At. Spectrom. 30, 745–750 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Tremsin, A. S. et al. Real-time crystal growth visualization and quantification by energy-resolved neutron imaging. Sci. Rep. 7, 1–10 (2017).

    Article 

    Google Scholar
     

  • Kai, T. et al. Visibility estimation for neutron resonance absorption radiography using a pulsed neutron source. Phys. Procedia 43, 111–120 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hasemi, H. et al. Evaluation of nuclide density by neutron resonance transmission at the NOBORU instrument in J-PARC/MLF. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 773, 137–149 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Janney, D. E. & Papesch, C. A. FCRD Transmutation Fuels Handbook 2015. Idaho National Laboratory report number INL/EXT-15-36520. https://doi.org/10.2172/1239879 (2015).

  • Brown, D. A. et al. ENDF/B-VIII. 0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Schillebeeckx, P. et al. Determination of resonance parameters and their covariances from neutron induced reaction cross section data. Nucl. Data Sheets 113, 3054–3100 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tremsin, A. S. et al. Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2009.01.041 (2009).

    Article 

    Google Scholar
     

  • Zawisky, M., Bastürk, M., Rehacek, J. & Hradil, Z. Neutron tomographic investigations of boron-alloyed steels. J. Nucl. Mater. 327, 188–193 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tremsin, A. S., et al. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging. AIP Advances 7.1, 015315 (2017).

    Article 

    Google Scholar
     

  • Losko, A. S. et al. Separation of uptake of water and ions in porous materials using energy resolved neutron imaging. JOM. https://doi.org/10.1007/s11837-020-04101-y (2020).

    Article 

    Google Scholar
     

  • Losko, A. S. et al. New perspectives for neutron imaging through advanced event-mode data acquisition. Sci. Rep. https://doi.org/10.1038/s41598-021-00822-5 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández, J. C. et al. Laser-plasmas in the relativistic-transparency regime: Science and applications. Phys. Plasmas 24, 56702 (2017).

    Article 

    Google Scholar
     

  • Zimmer, M. et al. Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source. Nat. Commun. 13.1, 1–11 (2022).


    Google Scholar
     

  • Mocko, M., Muhrer, G. & Tovesson, F. Advantages and limitations of nuclear physics experiments at an ISIS-class spallation neutron source. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 589, 455–464 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Windsor, C. G. Pulsed Neutron Scattering (Taylor & Francis, 1981).


    Google Scholar
     

  • Chadwick, M. B. ENDF nuclear data in the physical, biological, and medical sciences. Int. J. Radiat. Biol. 88, 10–14 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Bohr, N. Neutron capture and nuclear constitution. Nature 137, 344–348 (1936).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Breit, G. & Wigner, E. Capture of slow neutrons. Phys. Rev. 49, 519 (1936).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lamb, W. E. Capture of neutrons by atoms in a crystal. Phys. Rev. https://doi.org/10.1103/PhysRev.55.190 (1939).

    Article 
    MATH 

    Google Scholar
     

  • Postma, H., Perego, R. C., Schillebeeckx, P., Siegler, P. & Borella, A. Neutron resonance capture analysis and applications. J. Radioanal. Nucl. Chem. 271, 95–99 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Harvey, J. Experimental Neutron Resonance Spectroscopy (Elsevier, 2012).


    Google Scholar
     

  • Copyright © cloudsbigdata.com All rights reserved. | Newsphere by AF themes.